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In the light of recent analytical results on the MHD Riemann problem, Godunov-
type numerical schemes for magnetohydrodynamics (MHD) are revisited. As the
first step, a model system that exactly preserves the MHD hyperbolic singularities is
considered. For this model, analytical results on shock waves are summarized and
critical problems occurring in developing shock-capturing methods are identified.
Using the results, we propose a new way to define fluxes on cell interfaces. It consists
of two solvers, one on the well-posed Riemann problem and another on the evolution
of Alfv én waves. Numerical experiments show that the new scheme is more efficient
in calculating large-time solutions. c© 1998 Academic Press
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1. INTRODUCTION

As numerical simulations come to play a vital role in studying the motion of ionized gases
in hypersonic flows [4, 33], space propulsion [42], and space physics [15], great emphasis
has been placed on the development of numerical schemes for the system of magnetohydro-
dynamic equations. Out of the various possibilities, Godunov-type schemes—encouraged
by successful applications to the Euler equations—are considered to be highly effective in
resolving discontinuities such as shock waves for high speed flow problems. These schemes
were pioneered by Godunov [22] who used the local characteristic structure obtained from

‡Present address: Centre pour Mathematiques et leurs Applications/CNRS, Ecole normale Superieure de
Cachan, 61 avenue du Pr´esident Wilson, 94235 Cachan Cedex, France.

545

0021-9991/98 $25.00
Copyright c© 1998 by Academic Press

All rights of reproduction in any form reserved.



546 MYONG AND ROE

solving the Riemann problem to define a upwind method. The basic building blocks can be
easily adapted to problems in higher space dimensions through the finite-volume approach.

Initially, application to the MHD equations seems to be straightforward. Brio and Wu
[8] developed an approximate MHD Riemann solver based on Roe’s scheme. Zachary and
Colella [45] developed a higher-order Godunov method for ideal magnetohydrodynamics.
Dai and Woodward [13, 14] presented an approximate Riemann solver which treats all
waves emanating from the initial discontinuity as themselves discontinuous. van Putten [41]
applied Roe’s scheme to fully relativistic planar MHD shock problems. Cargo and Gallice
[9, 10] constructed a Roe’s matrix which is valid for arbitrary ratio of specific heats. Aslan
[3] carried out one-dimensional simulation of MHD waves using Roe’s solver.

However, it soon becomes apparent that the wave structure in MHD is far more compli-
cated than that in gas dynamics, in that there exist hyperbolic singularities where the MHD
eigensystem is not well behaved. There have been two schools of thought on the numerical
effects of these singularities. One is that the effect on the Riemann solution is not global, so
that all the problems can be handled merely by a conservative discretization. All of the above
works fall under this category. The other is that the effect is global, so that Godunov-type
schemes that do not explicitly account for the special character of MHD waves are inappro-
priate. The difficulty was demonstrated for a simple nonstrictly hyperbolic system by Tveito
and Winther [39]. They argued that a piecewise constant approximation generates a solu-
tion with erroneous qualitative behavior. Similarly, it was implied by Freist¨uhler [18, 19]
that precise control of the numerical dissipation is crucial for generating the correct nu-
merical solutions. However, none of these could provide definite recipes for treating MHD
singularities, whose behavior, essentially the problem of shock admissibility, has not been
well-understood.

The study of the admissibility of MHD shock waves has a long history [21, 12, 20, 44].
Since an explicit form of the MHD Rankine–Hugoniot relations was derived in the late
1950s [6], it has remained as a lingering source of debate. In particular, the question of
whether the intermediate shocks, which are defined as shocks that change the orientation of
the transverse fields, can exist in the real world has been a hotly debated issue. In the past, all
the intermediate shocks were considered nonphysical by the so-called evolutionary theory
[1, 2, 27, 34], an MHD version of the Lax condition [28]. This theory restricts physically
relevant shocks to those across which only one family of characteristics converges.

Contrary to this theory, it was shown in a recent series of numerical computations by
Wu [43, 44] that some intermediate shocks can exist, although the rotational discontinuity
(a discontinuous wave that changes only the direction) cannot exist. A similar conclusion
was drawn in an analytical study of Freist¨uhler [17]. Even an observation of an intermediate
interplanetary shock has been reported by Chaoet al. [11].

However, criticisms of physical relevance of intermediate shocks still persist. For ex-
ample, Markovskii and Somov [29] argued that intermediate shocks are only realizable if
their disintegration into a set of evolutionary discontinuities is forbidden for some reason.
From the numerical viewpoint, Barminet al. [5] and Dai and Woodward [13] argued that
numerical viscosity can produce intermediate shocks and thus they must not be considered
physically relevant. In these arguments, the theoretical justification for banishing interme-
diate shocks is the evolutionary theory; intermediate shocks are unstable against rotational
perturbation.

In an attempt to solve this controversy, we started an analytical study of intermediate
shocks [30–32]. The study was based on a 3× 3 model set of conservation laws that share
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the singularity structure of the MHD equations, and it is that model that we study numerically
in the present paper. However, all important conclusions go over to the MHD equations. In
that study, we showed that all entropy-satisfying intermediate shocks have viscous profiles,
which suggests that they may sometimes be allowable. We also found that the nonplanar
MHD Riemann problem is not well-posed, whereas the planar MHD Riemann problem
(where both solution vectors, the velocity and the magnetic field, are assumed to lie in
one plane) is actually well-posed despite using intermediate shocks to allow the transverse
field to change sign. We also gave formulae that allow the exact solution to be constructed,
although very lengthy iteration is involved. In the nonplanar problem multiple solutions
can exist for given data. Choosing the correct solution could involve knowing the details of
the physical dissipation and also having some information about the structure of the data
beyond regarding it as just a discontinuity.

Our conclusions can be expressed as follows. Nonevolutionary shocks—some of them
compound waves—in general disintegrate at sufficiently large times into regular shocks and
Alfv én waves, unless they cause rotation by a multiple ofπ . In that case, they may persist if
they have the correct internal structure. For a particular form of dissipation we were able to
indicate this structure. Thus weak solutions involving intermediate shocks should in these
special cases be allowed in numerical solutions of both the planar and nonplanar Riemann
problem. In the planar problem they are automatically stabilized by the absence of any
out-of-plane components in the computation. This was the case with the compound wave
discovered by Brio and Wu [8].

In nonplanar problems, intermediate shocks may appear unpredictably in numerical so-
lutions, since numerical schemes have their own kind of dissipation that may not select the
same set of weak solutions selected by the physical dissipation. In cases of uncertainty there
seems to be no alternative to using a grid fine enough to resolve the internal structure and
including the dissipative effects in the discretization.

However, there is one likely scenario in which a short cut is still possible. If we assume that
the physical dissipation is such as almost always to cause the eventual disintegration of all
nonevolutionary waves, and if we assume that our interest is in obtaining the solution at large
times, then the numerical scheme should encourage nonevolutionary waves to break up as
quickly and cleanly as possible. This point is exactly how the strategy for developing MHD
codes in this paper differs from the previous works. Nevertheless, if nonevolutionary waves
are enforced, for example by symmetry, then our scheme is capable of computing them.

Our strategy can be summarized as follows. From general left and right states, we identify
a modified Riemann problem that is well-posed and for which an approximate Riemann
solver can be easily constructed. From this, we calculate intermediate states and into these
insert the Alfvén waves. Finally, from this information we calculate fluxes on cell surfaces.
This scheme can allow intermediate shocks as weak solutions, but it will not violate any
physical laws. Numerical solutions can converge to large-time solutions more quickly than
with previous methods since the transverse field is described more accurately.

This paper will pursue these topics for a model system that exactly preserves the sin-
gularities of the MHD system. It is organized as follows. In Section 2, we summarize the
analytical results on the Riemann problem. In particular, we present a viscosity admissibil-
ity condition that allows the existence of intermediate shocks. For numerical verification,
several exact solutions of Riemann problem are given. In Section 3, we propose a new
scheme based on the well-posed Riemann problem, and numerical implementation of an
entropy condition is discussed. In Section 4, several numerical results are presented in
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order to demonstrate the property of the new scheme. Finally, in Section 5, we discuss the
possibility of extending the new scheme to the actual MHD system and discuss what the
effects of that extension might be.

2. THEORY OF THE RIEMANN PROBLEM FOR THE MHD MODEL

A close look at MHD waves suggests that they may be described concisely in a three-
dimensional phase space consisting ofp, By, Bz [7, 23, 31]. A 3× 3 model system exactly
preserving the MHD singularities was derived,1

ut + fx = duxx, (2)

where

u =
 u

v

w

 , f =
cu2 + v2 + w2

2uv

2uw

 , d =
µ 0 0

0 η −χ

0 χ η

 . (3)

The longitudinal viscosityµ, the magnetic resistivityη are the dissipative coefficients, while
the Hall coefficientχ is a dispersive coefficient. Since we can obtain a large body of analytic
results for this system, it can serve as a test bed for developing various numerical schemes.
We present here only an outline of the more complete analysis available in [26, 31].

2.1. Eigensystem

The model system yields three waves, which can be described as Alfv´en, fast and slow;
their speeds are given by

λa = 2u, λ f,s = (c + 1)u ± (
(c − 1)2u2 + 4(v2 + w2)

)1/2
, (4)

always satisfyingλs ≤ λa ≤ λ f . One ofλs, f vanishes whenv2 + w2 = cu2. These waves
can be thought of as the set of MHD waves that run wholly to the right of the contact dis-
continuity, but note that the wavespeeds as defined here may be negative. The normalized
left and right eigenvectors are

ls,a, f =

−α f S αsv
′ αsw

′

0 w′ −v′

αsS α f v
′ α f w

′

 , r s,a, f =

−α f S 0 αsS

αsv
′ w′ α f v

′

αsw
′ −v′ α f w

′

 . (5)

Here several nondimensional quantities are introduced;

α2
f = λa − λs

λ f − λs
, α2

s = λ f − λa

λ f − λs
, v′ = v

r
, w′ = w

r
, S = sign(α f αs), (6)

1 Here the correspondences to the MHD system are satisfied,

c = γ + 1, u =
(

a

ca

)2

− 1, v = By

Bx

, w = Bz

Bx

,

whereca = τ 1/2|Bx| is the Alfvén wave speed,a = √
γ τp is the acoustic wave speed,p is the pressure, andτ is

the specific volume.Bx,y,z arex, y, z components of the magnetic field. The proof ofc= γ + 1 can be found in
Appendix C of [32]. For physically relevant casesγ ≥ 1, whereγ is the ratio of specific heats, and soc≥ 2. For
algebraic simplicity we will often takec= 3.
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whererei φ = v + i w. Compare withα f,s, βy,z in the MHD equations [38],

α2
f = 1 − qs

qf − qs
, α2

s = qf − 1

qf − qs
, βy,z = By,z

B⊥
, (7)

whereqf,s = c2
f,s/a2 andB2

⊥ = B2
y + B2

z . cf,s represent fast and slow magnetoacoustic wave
speeds. Forα f,s, there exists symmetry in the relationships

α2
s + α2

f = 1, αsα f = 2r

λ f − λs
S. (8)

As with the MHD eigensystem, there are some cases that can potentially cause trou-
ble. First, quantitiesv′, w′ are indeterminate ifr = 0. In a theory that treats only small
disturbances they may be given arbitrary values, provided their squares sum to unity
v′ = cosφ, w′ = sinφ, but this is unconvincing if a small value ofr arises numerically
as an average of two large neighboring values. It will be seen later that our treatment largely
removes this singularity.

Second,α f,s become indeterminate near theumbilic point u = r = 0 at whichλs = λa =
λ f ; that is, all three waves resonate. However, sinceα2

s + α2
f = 1, the eigenvectors cannot

be singular. Near the singularity,α f,s can be shown to equal

α2
f = sin2 θ

2
, α2

s = cos2
θ

2
, (9)

whereθ = tan−1(2/(c − 2)(r/u)), but although this clarifies the nature of the singularity it
does not remove it. The singularity is somewhat benign; Roe and Balsara [38] showed that
any error in evaluatingα f,s near the umbilic point was not magnified in any corresponding
error in the numerical flux. In the present treatment, Riemann problems close to the umbilic
point are avoided unless both states are close to the umbilic point.

2.2. Rankine Hugoniot and Shock Admissibility Conditions

The admissibility of MHD shock waves has been a matter of much debate over the years
[1, 27]. Recently, we developed a global theory for the model and MHD systems [31, 32]
that distinguishes between planar and nonplanar problems. However, in both cases it is
required that admissible shocks have viscous profiles. Here the planar problem means
that there exists now component; in other words, everything is confined in flatland. As a
result, there exists no Alfv´en wave in the planar problem. On the other hand, nonplanar
problems are of two types: coplanar problem with end states in the same plane and nonzero
w components and noncoplanar problem.

2.2.1. Planar shocks.Travelling shock-wave solutions satisfy the Hugoniot condition
[f ] = s[u], wheres represents the shock speed. For the planar model problem, the Rankine–
Hugoniot relation is obtained by eliminatings; it is

v̄[u]2 + (1 − c)ū[u][v] − v̄[v]2 = 0, (10)

where the overbars indicate arithmetic averages taken across the discontinuity and [Q]
denotes the jump of a quantityQ, that is,(QR − QL). Throughout this paper we reserve
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L , R for downstream and upstream states. For left and right states, we will use subscripts
l , r . By this definition,L = l and R= r for right-running waves, butL = r and R= l for
left-running waves. Since only waves propagating to the right with respect to the fluid are
represented in the present model,L = l and R= r . Shock speeds can be found from the
eigenvalue equation

λ f,s = (c + 1)ū ± (
(c − 1)2ū2 + 4v̄2

)1/2
. (11)

Since for quadratic conservation laws, the so-called midpoint rule holds [26];

sf,s(uL , uR) = λ f,s(ū), (12)

whereū = 1
2(uL + uR). The four parameters(λ f,s)L ,R − s determine the type of shocks.

Only slow, fast, and overcompressive shocks were shown to be physically relevant by the
viscosity admissibility condition in [31, 32], so that only these shocks should be found in
numerical solutions. However, the undercompressive shocks do not have viscous profiles
and so they must not appear in planar solutions.

2.2.2. Entropy production.Both the planar and nonplanar models possess an entropy
σ = u2 + v2(+w2) which satisfies

σt + gx = 0, (13)

whereg= 2u(cu2/3 + v2 + w2) is the entropy flux. The increase of entropy across a
discontinuity is easily found to be

−1

6
[u]

(
c[u]2 + 3[v]2 + 3[w]2

)
,

so that the condition for entropy to increase is simply that [u] < 0. Throughout this paper, the
phrase “entropy-satisfying” will be used to denote that this condition is met. However, the
planar Riemann problem is well-posed only when we admit those shocks that are entropy-
satisfying and also have viscous profiles, which excludes undercompressive shocks.

2.2.3. Nonplanar shocks.For the nonplanar model, the Hugoniot condition (10) is
modified to read

r̄ [u]2 + (1 − c)ū[u][r ] − r̄ [r ]2 = 0, (14)

wherer 2 = v2 + w2, and we also find that

[u](v̄[w] − w̄[v]) = 0, (15)

which admits noncoplanar jumps only if [u] = 0; these are the Alfv´en waves for which
(from (14)) [r ] = 0. In fact, the wave trajectories are all either coplanar(vLwR = vRwL) or
purely rotational([u] = [v2 + w2] = 0).

The signs of the six parameters(λ f,a,s)L ,R − s determine which of the MHD characteris-
tics run into the shock. In MHD terminology2 the signs can be represented by four domains

2 Shocks in MHD are characterized by an ordered pair of labels(P → Q), such that in the upstream state the
shock speeds lies in regionP and in the downstream states lies in Q.
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FIG. 1. Entropy-satisfying MHD waves having viscous profiles:S1, S2, regular shocks;I S1, I S2, O, X, in-
termediate shocks;C1, C2, slow, fast compound waves.

I–IV defined as

IV λs III λa II λ f I.

In [31] it turned out that entropy satisfying regular shocksS1(III → IV), S2(I → II) and in-
termediate shocksI S1(II → IV), I S2(I → II), O(I → IV), X(II → III) all have viscous pro-
files. The principal difference between the planar and nonplanar analysis is thatX(II → III )
shocks have viscous profiles only in the nonplanar case. Entropy-satisfying MHD shocks
having viscous profiles—some of which are embedded in compound waves—are illustrated
in Fig. 1. OnlyS1(III → IV) and S2(I → II) shocks are considered physical in classical the-
ory. In summary, contrary to the planar problem, the entropy condition [u] < 0 is equivalent
for the nonplanar problem to the viscosity admissibility condition.

2.3. Riemann Problem

The Riemann problem concerns the evolution of an arbitrary initial discontinuity. The
evolution can be described by various self-similar waves, contact discontinuity, and rare-
faction waves, as well as shock waves. The model problem has no contact discontinuities.
Planar rarefaction waves are described (whenc= 3) by

Js, f = u ± (u2 + v2)1/2, (16)

λ f,s = 4u ± 2(u2 + v2)1/2 (17)

= dx

dt
= x

t
, (18)

where Js, f are the Riemann invariants such that−∞ < Jf < 0 for a fast wave and 0<
Js < ∞ for a slow wave. In passing through a rarefaction wave, the state vector(u, r )
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FIG. 2. Hugoniot locus and rarefaction-wave curves for a particular choice of the left stateL. I E1 represents
IV → II expansive shock. The part of undercompressive shock(X) with [u] < 0 represents entropy-satisfying
II → III shock, while the part with [u] > 0 represents entropy-violating III→ II shock. The geometry of this dia-
gram changes asL is placed in different regions of the plane; for more complete diagrams see [31].

traverses a parabola (see Fig. 2 and Eq. (16)), leading to the nonconvexity atr = 0, and the
need to include compound waves to ensure a well-posed Riemann problem.

There are two types of compound waves: the slow compound wave, a slow rarefaction
wave followed by an intermediate slow shock; and the fast compound wave, an interme-
diate fast shock followed by a fast rarefaction wave. The relationship between the shock
and characteristics in compound waves is shown in Fig. 1. Using these compound waves,
together with rarefactions, regular shocks, and overcompressive waves, it can be shown
[26] that the planar Riemann problem is well-posed. Therefore, all shocks having viscous
profiles, including ones embedded in compound waves, can appear in numerical solutions.

On the other hand, the Riemann problem becomes ill-posed in the nonplanar problem.
This can be seen by noticing that for some data many solutions are possible, as will be
shown in Section 2.4. They involve different internal structures that can be specified by, for
example, the transverse field moment,

Iz ≡
∫ ∞

−∞
w dx. (19)

This integral exists for coplanar data if one aligns they-axis with the direction of the
end-states. Otherwise, it can be defined by taking the limits of integration to be large but
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finite, such that they lie in essentially uniform regions. In either case the third equation of
the nonplanar model system yields

d Iz
dt

+ 2[uw] = 0. (20)

When the end-states are coplanar and if they-axis is aligned with the direction of the
end-states(wL = wR = 0), Iz is invariant; but once the problem becomes noncoplanar,Iz

becomes time-dependent.

2.4. A Family of Riemann Problems with Nonunique Solutions

For a planar Riemann problem whose left and right states are equal and opposite,
uL = −uR = (−u0, v0), u0, v0 > 0, the analytical solution isC1C2 [31], a slow compound
wave followed by a fast compound wave, described by

u = 1

3

(
Js + 1

2

x

t

)
, v =

(
Js

3

(
Js − x

t

))1/2

for −2(3u0 + Js) ≤ x

t
< 0, (21)

u = 1

3

(
Jf + 1

2

x

t

)
, v = −

(
Jf

3

(
Jf − x

t

))1/2

for 0<
x

t
≤ 2(3u0 − Jf ). (22)

An overcompressive shock with the speeds= 0 is located atx = 0. In Fig. 3 this solution
is shown asL N N′ R, with all curves lying in the planew = 0. The solution in the physical
planex, t is shown in Fig. 4. Each rarefaction fan extends right up to the shock, which
therefore has one characteristic parallel to it on each side; this is the dividing case between
an undercompressive and an overcompressive shock.

If w is allowed to be nonzero, another solution can be obtained by following the rarefaction
curves only as far asM, M ′, whereuM = uM ′ = 0, (x/t)M = −2Js, (x/t)M ′ = −2Jf , and
then linking these states by an Alfv´en wave atx/t = 0. In fact, an infinite family of solutions
can be found, as indicated in Fig. 4.

FIG. 3. Reference states on a slow rarefaction-wave curve and multiple solutions for a Riemann problem
uL = −uR = (−0.44, 2.4, 0). The pointsN N′ can be joined by profiles lying either in or out of the plane. The
pointsM M ′ are joined by a semicircle that represents Alfv´en wave(A).
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FIG. 4. (a)–(c). The multiple solutions in the physical plane(x, t).

All of the shocks involved are entropy-satisfying and have viscous profiles for the par-
ticular form of dissipations,µIu xx. The solution,

u = −u0 tanh(2u0x/µ),

v = −v0 tanh(2u0x/µ) + Cw0 sech(2u0x/µ),

w = −w0 tanh(2u0x/µ) − Cv0 sech(2u0x/µ),

(23)

represents a transition between statesuR = −uR = (u0, v0, w0), provided

C2 = 1 + (c − 2)u2
0

v2
0 + w2

0

.

These profiles exist both for overcompressive shocks(r0/u0) <
√

c and for undercompres-
sive shocks(r0/u0) ≥ √

c.
Without loss of generality, letw0 = 0, so that the wave is polarized in thex, y plane.

Then, a transverse field moment is

Iz = −C(µπ/2)
v0

u0
or I 2

z = π2µ2

4

(
v2

0

u2
0

+ c − 2

)
. (24)

A shock of this form can be used to join any point on the segmentM N to its reflection in
the origin, so completing a Riemann solution. The path includes a semi-elliptical trajectory
outside the planew = 0 that is defined by the viscous profile (23). The associated value
of Iz increases fromπµ

√
(c − 1)/2 at N N′ to infinity at M M ′, this latter limit being the

Alfv én wave. Being linearly degenerate this wave has no true travelling waveform, but is
asymptotically infinite in extent. (The width of the waves can be measured in terms of
µ/µ0.) Note that for the pathN N′ a second path withIz = 0 exists, corresponding to the
planar solution.

3. NUMERICAL SCHEMES BASED ON WELL-POSED RIEMANN PROBLEMS

3.1. Godunov’s Method

First, we consider Godunov-type methods. The Godunov numerical flux can be defined
as

F(ul , ur ) = f(u∗(ul , ur )), (25)
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whereu∗(ul , ur ) is the intermediate stateu(0) arising in the similarity solutionu(x/t) of
the Riemann problem, defined as an initial discontinuity(ul for x ≤ 0, ur for x > 0). The
Godunov method is clearly ambiguous if the Riemann problem is ill-posed.

Here, we propose a new way to determine the intermediate stateu(0). The basic idea
is first to solve the planar Riemann problem (which is well-posed), and then to insert an
Alfv én wave to deal with the rotation. In this framework, the magnetic field moments can
be dealt with more naturally. Furthermore, the indeterminacy ofv′, w′ in (6) will disappear.

The new scheme can be summarized as follows. Let us consider two solutions to the
model Riemann problem with data(ul , vl , wl ), (ur , vr , wr ) of the conservation laws (2).
We begin by solving the planar Riemann problem with data(ul , rl ), (ur , rr ), where

r 2
l = v2

l + w2
l , (26)

r 2
r = v2

r + w2
r . (27)

We can either choose to solve the problem in whichrl , rr have the same sign, or else the
problem in which they have opposite sign. In the first case, it can be shown that the path
joining the left and right states always contains a unique point for whichx/t = 2u and
where an Alfvén wave can be inserted to realign the left and right field orientations with an
arbitrary adjustment. The second case always contains an intermediate shock that reverses
the sign ofr . The sign ofx/t − 2u changes across this shock and nowhere else, so there
is nowhere to insert an Alfv´en wave, and no way to realign the field directions (unless
by 180◦). We therefore choose the first strategy, withrl rr > 0. If rl = rr = 0, the resulting
equation will simply be a scalar conservation law foru.

There is one remaining ambiguity. The sense of the rotational discontinuity (clockwise
or anti-clockwise) is unresolved, and even its magnitude contains an arbitrary multiple of
2π . However, for the ideal problem, the representation in physical space is unaffected.
Therefore, this form of the Riemann solution defines a unique numerical flux.

3.2. Roe’s Scheme

Solving the MHD Riemann problem exactly turns out to be impractical, since even under
an evolutionary condition it involves too many cases (the waves on either side of the contact
may beS1S2, S1R2, R1R2, R1S2, S1, S2, R1, R2, each of these with or without an Alfv´en
wave). Thus we will be forced to use some approximations in MHD and therefore develop
them also for the model problem.

In Roe’s approximate Riemann solver [35],û(x, t) is determined by solving a constant
coefficient linear system of conservation laws,

ût + Â(ul , ur )ûx = 0. (28)

If Â has eigenvalueŝλi and right eigenvectorŝr i , and if we decompose [u] = ∑
âi r̂ i , then

we have(ξ = x/t)

û(ξ) = ul +
∑
λ̂i <ξ

âi r̂ i = ur −
∑
λ̂i >ξ

âi r̂ i . (29)
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If some conditions are satisfied on̂A, the numerical flux becomes

F j +1/2 = f(U j ) +
∑
λi <0

(λ̂i âi r̂ i ) j +1/2, (30)

= f(U j +1) −
∑
λi >0

(λ̂i âi r̂ i ) j +1/2, (31)

= 1

2
(f(U j ) + (f(U j +1)) − 1

2

∑
i

(|λ̂i |âi r̂ i ) j +1/2, (32)

= 1

2
(f(U j ) + (f(U j +1)) − 1

2
|A(Û j +1/2)|(U j +1 − U j ). (33)

In these equations, the hat represents Roe’s average. However, because the model problem
has only quadratic nonlinearity these are here just arithmetic means:

ū = 1

2
(ul + ur ), v̄ = 1

2
(vl + vr ), w̄ = 1

2
(wl + wr ). (34)

However, to create an approximation to the solver discussed in the previous section, we
do not implement the method here in precisely this way; in particular, we do not employ the
above averages. We take, instead, coplanar data(ul , rl ), (ur , rr ) and solve the approximate
coplanar problem with

ū = 1

2
(ul + ur ), r̄ = 1

2
(rl + rr ), (35)

When the left and right states are separated by close to 180◦ this form of averaging is very
different from the previous one.

Finally, the direction of the stationary state,φ∗ is taken to beφl if the Alfv én wave has
positive speed, andφr if the Alfv én wave has negative speed, i.e.,

φ∗ = 1

2
(1 + sign(λ∗

a))φl + 1

2
(1 − sign(λ∗

a))φr . (36)

φ∗ is undetermined ifu∗ = 0; but in that case the fluxes in (3) do not depend onφ∗.
Specifically, if the Riemann flux for the coplanar problem is

f∗
C =

(
f ∗
1

f ∗
2

)
(37)

then the Riemann flux for the noncoplanar problem is

f∗
N =

 f ∗
1

f ∗
2 cosφ∗

f ∗
2 sinφ∗

 . (38)

Alternatively, one may work with(u, r, φ) as the unknowns.
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3.3. Higher-Order Accuracy

Most of procedures developed for higher accuracy can be applied to this method. For
example, the MUSCL approach [40] and flux-limited methods can be used to obtain second-
order accuracy. In this study, the following second-order space- and time-accurate upwind
scheme, Hancock’s scheme, is used [25, 36]. After a step involving a propagation over a
time step1t/2,

Ū j = Un
j − 1t

21x

(
Fn

j +1/2 − Fn
j −1/2

)
, (39)

whereF can be given from Eqs. (33), (36), and (38), second-order extrapolations are intro-
duced toŪ,

Ul
j +1/2 = Ū j + 1

2
Bl

(
Un

j − Un
j −1

)
, (40)

Ur
j −1/2 = Ū j − 1

2
Br

(
Un

j +1 − Un
j

)
, (41)

where

Bl ,r = 1

2

(
(1 − κ)B(bl ,r ) + (1 + κ)bl ,r B

(
1

bl ,r

))
, bl = 1

br
= Un

j +1 − Un
j

Un
j − Un

j −1
,

and the ratios in the last equation are defined componentwise. An extrapolation parameter
κ and a symmetric limiterB(b) are introduced. Then the final scheme is

Un+1
j = Un

j − 1t

1x
(F̄ j +1/2 − F̄ j −1/2), (42)

whereF̄ j +1/2 = F(Ul
j +1/2, Ur

j +1/2).

3.4. Entropy Condition

It is often necessary to modify Roe’s approximate Riemann solver in order to remove
entropy-violating shock waves. There exist various ways to do this [3, 24, 37], but it has
not been found necessary to implement any of them in the present work. The MUSCL
reconstruction tends to avoid most of the problems and leaves only very small “glitches”
(see numerical experiment 1).

3.5. Other Schemes

From Eq. (38) the idea can be applied to other Godunov-type numerical schemes, for
example, Marquina’s scheme whose the flux function combines Roe’s flux and a local Lax–
Friedrichs flux [16]. Indeed, since it is based on a reformulation of the ideal equations, it
can also be applied to other schemes such as the Lax–Wendroff scheme.

3.6. Discussion

For Riemann problems in which the left and right states have transverse vectors with
significantly different orientations, the new schemes, either arising from Godunov’s method
or from Roe’s, will give quite different fluxes from the old ones. The dissipation matrix
|A| in (33) can be determined to be, in the planar case, whenλs ≤ 0 ≤ λ f (that is, when
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v̄2 ≥ cū2 and the flux is not wholly upwind),

|A| = 1(
(c − 1)2ū2 + 4v̄2

)1/2

(
4v̄2 + 2c(c − 1)ū2 2(c + 1)ūv̄

2(c + 1)ūv̄ 4v̄2 − 2(c − 1)ū2

)
. (43)

The trace of this matrix,

Tr(|A|) = 2
(
(c − 1)2ū2 + 4v̄2

)1/2
,

is a measure of the numerical dissipation.
Consider left and right states comprising a rotational discontinuityuL = (u0, v0), uR =

(u0, −v0). This is not, in general, an allowable discontinuity for either the planar or non-
planar problem. For the regular Roe solver, we haveū = u0, v̄ = 0; hence, Tr(|A|) =
2|(c− 1)u0|. Whereas for the modified solver we haveū = u0, v̄ = v0; hence, Tr(|A|) =
2((c− 1)2u2

0 + 4v2
0)

1/2 which is greater than the regular dissipation by a factor of at least
(c+ 1)/(c− 1). Therefore, we expect one feature of the new solver to be that it breaks up
nonphysical discontinuities more rapidly.

Another aspect of the modified solver can be seen by considering data such thatuL = −uR.
For the old solver, the mean state isū = v̄ = 0, and|A| vanishes, whereas with the new solver,
|A| becomes a diagonal matrix diag(2|v0|, 2|v0|).

We now conduct some numerical experiments to observe the effects of these differences.

4. NUMERICAL RESULTS

The evolution of initial discontinuities predicted in Section 3 will be investigated by
an upwind scheme using either a conventional Roe’s solver (34) or the modified scheme
(35). In all cases,c= 3, a grid of 200 points with1x = 0.005 and the CFL number 0.5
are used. For second-order schemes, one-sided extrapolationκ = −1 and minmod limiter
B(b) = max(0, min(1, b)) are used. The analytical solutions are described in Section 2.4
and are denoted by solid lines in Figs. 5–8.

4.1. Behavior at a Sonic Point

The first test problem intends to check the performance of the MUSCL scheme for data
featuring an entropy-violating shock. The initial discontinuity is a fast switch-off expansive
shock defined asuL = (−u0, 0, 0), uR = (u0, 2u0, 0), u0 > 0. The corresponding physical
solution consists of slow and fast rarefaction waves. The slow rarefaction wave turns into
fast one at((1− 51/2)/2)u0. Numerical results in the physical spaceu(x) and in the state
spacev(u) are shown in Figs. 5a and b. Without any fix, the first-order scheme leads to a
fast expansive shock. On the other hand, the MUSCL-type second-order scheme produces
a numerical solution very close to the analytical solution, without the help of any sonic fix.

4.2. A Problem with No Unique Solution

The next problem is chosen for the purpose of investigating which solutions among the
multiple ones discussed in Section 2.4 will be obtained by the new scheme. The initial
discontinuity is an entropy-violating shock defined asuL = −uR = (−0.44, 2.4, 0). The
analytical solution isC1C2 when Iz = 0 (L N N′ R in Figs. 3 and 4) andR1AR2 when Iz
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FIG. 5. Results for a test problemuL = (−u0, 0, 0), uR = (u0, 2u0, 0), u0(=1) > 0 by the new upwind scheme
with Roe’s solver: (a) first-order scheme without a sonic fix (top); (b) MUSCL-type second-order scheme without
a sonic fix (bottom).

becomes infinity (L M M ′ R in Figs. 3 and 4). We stress, however, that these calculations
do not resolve the internal structures or compute the dissipative terms, so thatIz for these
ideal calculations remains zero. Figure 6 shows that the conventional scheme actually yields
neither of the above solutions but, instead, yields anR1X R2 configuration involving II→ III
intermediate shock with a larger entropy-production rate. On the other hand, the new scheme
yieldsR1AR2 configuration involving Alfvén wave with a smaller entropy-production rate,
which is shown in Fig. 7. The perfect resolution of this wave is due to its being stationary
with respect to the grid. Other properties are similar to the result by the conventional scheme.

This test provides an example where the numerical solution is shown to be subject to
the method used for defining interface fluxes, in this case by defining the average state.
Therefore, we may build schemes in which different sets of Riemann solution are allowed.
Here, it turns out that one tends to produce the intermediate-time solution, while another
tends to generate the large-time solution.

4.3. Rotational Discontinuity

At this stage, it may be instructive to check the evolution of the rotational disconti-
nuity. The initial discontinuity is given asuL = (0.19, 1.8, 0), uR = (0.19, −1.8, 0). The
analytical solution [31] to the planar problem is a fast rarefaction followed by a slow com-
pound wave,C1R2. Four equations (10)–(12) and (16) will determine two intermediate
states uniquely. The three waves, a slow rarefaction, a slow intermediate shock, and a fast



FIG. 6. Results for a Riemann problemuL = −uR = (−0.44, 2.4, 0) by the regular version of Roe’s solver in
a second-order upwind method.

FIG. 7. Results for a Riemann problemuL = −uR = (−0.44, 2.4, 0) by the new version of Roe’s solver in a
second-order upwind method.
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FIG. 8. Results for a Riemann problem of rotational discontinuityuL = (0.19, 1.8, 0), uR = (0.19, −1.8, 0):
(a) conventional second-order upwind scheme (left half); (b) new second-order upwind scheme (right half).

rarefaction, are defined by four regions,(x/t)L = −2.86, (x/t)M,M ′ ' 0.4608 and 2.542,
and(x/t)R = 4.38.

Figures 8a and b show the results by the conventional and the new second-order upwind
schemes. The results show excellent shock-capturing capability without spurious oscil-
lations. Both schemes destroy the rotational discontinuity and converge to the analytical
solution, but the new scheme yields a slightly better result. Here, it should be mentioned
that even though the new scheme is built using only conventional evolutionary waves, the
solution produces a nonevolutionary intermediate shock embedded in the compound wave.
That is to say, it allows nonevolutionary waves to persist if, as here, they are constrained by
symmetry to do so. And when they are present, they are well-resolved.

4.4. Slightly Nonplanar Data

Up to now, we considered only coplanar Riemann problems. Even though these have
served to explore the MHD singularities, they are probably rare in practice. Thus the
problems of more interest will be ones for which the differences in orientation are close
to multiples ofπ . In Fig. 9, such a problem is studied by applying a small rotational
disturbance to upstream and downstream states. Initially, the discontinuity is defined as
uL = −uR = (0.9375, 0.5, 0.0). This is preserved as a stable numerical solution by the
regular scheme, although the modified scheme breaks it up immediately into anS1AS2

configuration, as seen in the right-hand figures. Then just after 300 iterations(t = t0, labelled
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FIG. 9. Results for a noncoplanar Riemann problemuL = −uR = (0.9375, 0.5, 0.0). t0, t1, t2, t3 indicate the
time after 300, 600, 900, 1200 iterations. Rotational disturbancew = 0.025 is applied att0: (a) conventional
second-order upwind scheme (left half); (b) new second-order upwind scheme (right half).

ast0 in Fig. 9), a rotational disturbancew = 0.025 is added everywhere, so that the flow is
no longer coplanar. The results are shown in the physical spacesu(x), v(x), andw(x).

With the new scheme theS1AS2 configuration persists and the perturbation is incorporated
smoothly. With the regular scheme the transition is slower and far less clean, featuring a
time-dependent intermediate shock that eventually converges to an Alfv´en wave. One of
the differences with the new scheme is the existence of a spike inw. It does not disappear
even in very large times and actually its amplitude increases.

In this case, the values ofv either side of the Alfv´en wave can be calculated by the
Hugoniot relation asv ' ±1.877, something that the new scheme predicts more accurately
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FIG. 10. Results for a noncoplanar Riemann problemuL = (0.19, 1.8, 0.0), uR = (0.19, −1.8, 0.0). t0, t1,
t2, t3 indicate the time after 200, 400, 600, 800 iterations. Rotational disturbancew = 0.09 is applied att0:
(a) conventional second-order upwind scheme (left); (b) new second-order upwind scheme (right).

than the old one. From this experiment, it is clear that the new scheme is more efficient than
the conventional one in converging to the large-time solution.

4.5. Perturbation of a Rotational Discontinuity

In Fig. 10, another similar case is studied that involves the perturbation of 180◦ rotational
discontinuity. The initial discontinuity is given asuL = (0.19, 1.8, 0.0), uR = (0.19, −1.8,

0.0). The exact solution for this planar problem is a slow compound wave formed from a
slow rarefaction and an intermediate shock. This solution is seen labelled ast0 in Fig. 10.
At time t0, the rotational disturbancew = 0.09 is added. Similarly to the previous results,
the slow intermediate shock embedded in the compound wave is broken up into an Alfv´en
wave and left-running waves. This time there is little difference between the two sets of
results. Notice that those left-running waves decay very slowly.

4.6. A Viscous Calculation

The last problem is considered in order to justify the new theory on the evolution of MHD
shock waves. We consider a I→ IV (overcompressive) intermediate shock(uL = −uR =
(0.9375, 0.5, 0), the same case that was treated ideally in Section 4.4) for which an exact
viscous profile can be obtained from (23). We discretized the nonideal equation

ut + fx = µIu xx

using the Lax–Wendroff method with extremely fine grids. We usedµ = 0.002 and 1000
grid points. This solution proved to be numerically stable.

Then we reran the computation with the same perturbation as in the ideal casew = 0.025,
and the outcome is shown in Fig. 11. Here the initial data is labelled ast0. After 1000
timesteps (labelt1) the internal structure of the initial profile has changed considerably
(see in particular the phase-space(u, v) and (v, w) plots). However, the appearance in
physical spaceu(x) shows little change. After 5000 iterations (labelt2) the internal pro-
file is approaching its asymptotic limit (a semicircle in(v, w)) and simultaneously the
shocks start to form and move outward. After 15000 timesteps (labelt3) the picture is
almost fully developed but decay of the central discontinuity is still not complete. The
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FIG. 11. Numerical experiments for nonideal problemuL = −uR = (0.9375, 0.5, 0), µ = η = 0.002 by the
Lax–Wendroff method with a very fine grids (1000 grid points).t0, t1, t2, t3 indicate the time after 0, 1000, 5000,
15000 iterations. Initial viscous profiles at timet0 and the evolution under noncoplanar variation are presented.
Rotational disturbancew = 0.025 is applied att0.

Alfv én wave continues to expand slowly in phase space toward the profile predicted by (23)
(u ≡ 0, v2 + w2 = const).

The integralIz, taken over any finite domain, grows through three effects that can be seen
in thew(x) plot: first, w grows in magnitude; second, the region occupied by the Alfv´en
wave broadens; and third, the shocks move out. The combined effect of all these must be that
Iz grows linearly in time (20) but the first two effects dominate the early history, whereas
the last effect dominates the late-time behavior. Looking back to Section 4.4 and Fig. 9, we
see that the new scheme, without resolving any internal structures, enforced very effectively
the late-time behavior. The ideal calculation, of course, does not reveal the time-dependent
broadening of the Alfv´en wave that must occur with any finiteµ.

5. SUMMARY AND DISCUSSION

As a step towards further refining Godunov-type numerical schemes for the MHD equa-
tions, a model system that exactly preserves the hyperbolic singularities has been studied.
With the help of recent analytical results on nonstrictly hyperbolic conservation laws, a
class of well-posed Riemann problem is identified. Based on this a new way to define
numerical fluxes on cell interfaces is proposed. Numerical experiments show that the new
scheme is more efficient in calculating the large-time solution. But the scheme also captures
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intermediate shocks where these are allowed by the analysis, for example, shocks causing
a 180◦ rotation. Analysis confirms that these intermediate shocks have viscous profiles,
implying that numerical realizations of nonevolutionary shocks are not a mere consequence
of numerical artifacts or forbidden disintegration of waves.

Extension to the full MHD equations presents some technical challenges, of which the
most obvious is that the full problem features, in general, two Alfv´en waves, and hence,
two possible places for rotation to take place. We hope to report on a solution to this
problem in due course. It also remains to be seen whether the essentially one-dimensional
analysis involved in Godunov-type methods will continue to pay dividends in two- and
three-dimensional calculations.

Nevertheless, we expect that the issues raised by the present work will remain impor-
tant. The MHD equations, unlike the Euler equations, have weak solutions that cannot be
determined in ignorance of the dissipations involved. The form of numerical dissipation
employed therefore can and does affect the selection of solutions. As always, one would
like to employ the weakest dissipation that bestows stability. The dissipation in Godunov-
type schemes is a matrix having rather subtle properties. The dissipation proposed here
is actually stronger than that of the regular scheme when faced with inadmissible shocks.
Our claim is that this can substantially accelerate the convergence of a code to those weak
solutions that typify late times.
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