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In the light of recent analytical results on the MHD Riemann problem, Godunov-
type numerical schemes for magnetohydrodynamics (MHD) are revisited. As the
first step, a model system that exactly preserves the MHD hyperbolic singularities is
considered. For this model, analytical results on shock waves are summarized and
critical problems occurring in developing shock-capturing methods are identified.
Using the results, we propose a new way to define fluxes on cell interfaces. It consists
of two solvers, one on the well-posed Riemann problem and another on the evolution
of Alfv’en waves. Numerical experiments show that the new scheme is more efficient
in calculating large-time solutions. © 1998 Academic Press

Key Words:Godunov-type schemes; conservation laws, magnetohydrodynamics.

1. INTRODUCTION

As numerical simulations come to play a vital role in studying the motion of ionized gz
in hypersonic flows [4, 33], space propulsion [42], and space physics [15], great emp
has been placed on the development of numerical schemes for the system of magneto
dynamic equations. Out of the various possibilities, Godunov-type schemes—encoul
by successful applications to the Euler equations—are considered to be highly effect
resolving discontinuities such as shock waves for high speed flow problems. These sct
were pioneered by Godunov [22] who used the local characteristic structure obtained
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solving the Riemann problem to define a upwind method. The basic building blocks car
easily adapted to problems in higher space dimensions through the finite-volume appro

Initially, application to the MHD equations seems to be straightforward. Brio and W
[8] developed an approximate MHD Riemann solver based on Roe’s scheme. Zachary
Colella [45] developed a higher-order Godunov method for ideal magnetohydrodynam
Dai and Woodward [13, 14] presented an approximate Riemann solver which treats
waves emanating from the initial discontinuity as themselves discontinuous. van Putten |
applied Roe’s scheme to fully relativistic planar MHD shock problems. Cargo and Galli
[9, 10] constructed a Roe’s matrix which is valid for arbitrary ratio of specific heats. Asle
[3] carried out one-dimensional simulation of MHD waves using Roe’s solver.

However, it soon becomes apparent that the wave structure in MHD is far more com
cated than that in gas dynamics, in that there exist hyperbolic singularities where the M
eigensystem is not well behaved. There have been two schools of thought on the nume
effects of these singularities. One is that the effect on the Riemann solution is not globa
that all the problems can be handled merely by a conservative discretization. All of the ab
works fall under this category. The other is that the effect is global, so that Godunov-ty
schemes that do not explicitly account for the special character of MHD waves are inapj
priate. The difficulty was demonstrated for a simple nonstrictly hyperbolic system by Tve
and Winther [39]. They argued that a piecewise constant approximation generates a ¢
tion with erroneous qualitative behavior. Similarly, it was implied by Freiki [18, 19]
that precise control of the numerical dissipation is crucial for generating the correct |
merical solutions. However, none of these could provide definite recipes for treating Mt
singularities, whose behavior, essentially the problem of shock admissibility, has not b
well-understood.

The study of the admissibility of MHD shock waves has a long history [21, 12, 20, 4¢
Since an explicit form of the MHD Rankine—Hugoniot relations was derived in the la
1950s [6], it has remained as a lingering source of debate. In particular, the questiol
whether the intermediate shocks, which are defined as shocks that change the orientati
the transverse fields, can existin the real world has been a hotly debated issue. In the pa
the intermediate shocks were considered nonphysical by the so-called evolutionary th
[1, 2, 27, 34], an MHD version of the Lax condition [28]. This theory restricts physicall
relevant shocks to those across which only one family of characteristics converges.

Contrary to this theory, it was shown in a recent series of numerical computations
Wu [43, 44] that some intermediate shocks can exist, although the rotational discontini
(a discontinuous wave that changes only the direction) cannot exist. A similar conclus
was drawn in an analytical study of Freiktér [17]. Even an observation of an intermediate
interplanetary shock has been reported by Gétaad. [11].

However, criticisms of physical relevance of intermediate shocks still persist. For
ample, Markovskii and Somov [29] argued that intermediate shocks are only realizabl
their disintegration into a set of evolutionary discontinuities is forbidden for some reas
From the numerical viewpoint, Barmgt al. [5] and Dai and Woodward [13] argued that
numerical viscosity can produce intermediate shocks and thus they must not be consid
physically relevant. In these arguments, the theoretical justification for banishing interr
diate shocks is the evolutionary theory; intermediate shocks are unstable against rotat
perturbation.

In an attempt to solve this controversy, we started an analytical study of intermedi
shocks [30—32]. The study was based onxa®3model set of conservation laws that share
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the singularity structure of the MHD equations, and it is that model that we study numeric
in the present paper. However, all important conclusions go over to the MHD equatior
that study, we showed that all entropy-satisfying intermediate shocks have viscous prc
which suggests that they may sometimes be allowable. We also found that the nong
MHD Riemann problem is not well-posed, whereas the planar MHD Riemann prob
(where both solution vectors, the velocity and the magnetic field, are assumed to |
one plane) is actually well-posed despite using intermediate shocks to allow the trans
field to change sign. We also gave formulae that allow the exact solution to be constru
although very lengthy iteration is involved. In the nonplanar problem multiple solutic
can exist for given data. Choosing the correct solution could involve knowing the detai
the physical dissipation and also having some information about the structure of the
beyond regarding it as just a discontinuity.

Our conclusions can be expressed as follows. Nonevolutionary shocks—some of
compound waves—in general disintegrate at sufficiently large times into regular shock
Alfv'en waves, unless they cause rotation by a multipte.dh that case, they may persist if
they have the correct internal structure. For a particular form of dissipation we were ak
indicate this structure. Thus weak solutions involving intermediate shocks should in t
special cases be allowed in numerical solutions of both the planar and nonplanar Rie
problem. In the planar problem they are automatically stabilized by the absence o
out-of-plane components in the computation. This was the case with the compound
discovered by Brio and Wu [8].

In nonplanar problems, intermediate shocks may appear unpredictably in numeric:
lutions, since numerical schemes have their own kind of dissipation that may not sele
same set of weak solutions selected by the physical dissipation. In cases of uncertainty
seems to be no alternative to using a grid fine enough to resolve the internal structur
including the dissipative effects in the discretization.

However, there is one likely scenario in which a short cut s still possible. If we assume
the physical dissipation is such as almost always to cause the eventual disintegration
nonevolutionary waves, and if we assume that our interest is in obtaining the solution at
times, then the numerical scheme should encourage nonevolutionary waves to break
quickly and cleanly as possible. This point is exactly how the strategy for developing M
codes in this paper differs from the previous works. Nevertheless, if nonevolutionary w
are enforced, for example by symmetry, then our scheme is capable of computing the

Our strategy can be summarized as follows. From general left and right states, we ide
a modified Riemann problem that is well-posed and for which an approximate Rien
solver can be easily constructed. From this, we calculate intermediate states and into
insert the Alfen waves. Finally, from this information we calculate fluxes on cell surfac
This scheme can allow intermediate shocks as weak solutions, but it will not violate
physical laws. Numerical solutions can converge to large-time solutions more quickly
with previous methods since the transverse field is described more accurately.

This paper will pursue these topics for a model system that exactly preserves the
gularities of the MHD system. It is organized as follows. In Section 2, we summarize
analytical results on the Riemann problem. In particular, we present a viscosity admis
ity condition that allows the existence of intermediate shocks. For numerical verifical
several exact solutions of Riemann problem are given. In Section 3, we propose a
scheme based on the well-posed Riemann problem, and numerical implementation
entropy condition is discussed. In Section 4, several numerical results are present
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order to demonstrate the property of the new scheme. Finally, in Section 5, we discuss
possibility of extending the new scheme to the actual MHD system and discuss what
effects of that extension might be.

2. THEORY OF THE RIEMANN PROBLEM FOR THE MHD MODEL

A close look at MHD waves suggests that they may be described concisely in a tht
dimensional phase space consistingpBy, B, [7, 23, 31]. A 3x 3 model system exactly
preserving the MHD singularities was derived,

Ut + fx == duXx, (2)
where
cuw? 4+ v + w? w 0 0
u=|v |, f= 2uv , d=10 n —x]|. 3)
2uw 0O x n

The longitudinal viscosity, the magnetic resistivity are the dissipative coefficients, while
the Hall coefficieniy is a dispersive coefficient. Since we can obtain a large body of analy1
results for this system, it can serve as a test bed for developing various numerical sche
We present here only an outline of the more complete analysis available in [26, 31].

2.1. Eigensystem

The model system yields three waves, which can be described amnAfast and slow;
their speeds are given by

1/2
”, 4)
always satisfyinghs <1, < 1. One ofs ¢ vanishes when? + w? = cu?. These waves
can be thought of as the set of MHD waves that run wholly to the right of the contact d
continuity, but note that the wavespeeds as defined here may be negative. The norma
left and right eigenvectors are

Aa=2U, Ars=(C+Duk((c— D%+ 40>+ w?)

—atS ast asw’ —a;S 0 «asS
lsaf = 0 w =V |, Tsaf= asv) w  agv |. (5)
asS  av afw’ asw’ —v asw

Here several nondimensional quantities are introduced;

da — As az_xf—xa
A —As S Af—Ag

o2 = V=2 w'=—. S=signuay).  (6)

1 Here the correspondences to the MHD system are satisfied,
a 2 By B,
c=y+1 u= (—a) -1, U:EX, w:EX,
wherec, = tV/?|B,| is the Alfvén wave speedi=,/y7p is the acoustic wave speegljs the pressure, andis
the specific volumeB, , , arex, y, zcomponents of the magnetic field. The proofcet y + 1 can be found in
Appendix C of [32]. For physically relevant cases- 1, wherey is the ratio of specific heats, and se- 2. For
algebraic simplicity we will often take= 3.
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wherere'? = v + iw. Compare withx¢ s, By, in the MHD equations [38],

1-0qgs az_qf—l _ Bys

Ol% = s s — s y.zZ— 5
qr — Qs qr — Gs B,

(7)
whereq s =c% ;/a?andBZ = B§ + BZ2. ¢t 5 represent fast and slow magnetoacoustic wa

speeds. Fok ¢ 5, there exists symmetry in the relationships

2r
Af —As

a2+a?=1 asar;=

(8)

As with the MHD eigensystem, there are some cases that can potentially cause
ble. First, quantities’, w’ are indeterminate if =0. In a theory that treats only small
disturbances they may be given arbitrary values, provided their squares sum to
v = cosg, w’ = sing, but this is unconvincing if a small value ofarises numerically
as an average of two large neighboring values. It will be seen later that our treatment Is
removes this singularity.

Secondg ¢ s become indeterminate near thmbilic pointu =r =0 at whichAs =i, =
A¢; that is, all three waves resonate. However, siage- o = 1, the eigenvectors cannof
be singular. Near the singularity; s can be shown to equal

.50 0
a%:SInZE, a§=co§§, 9)

whered =tarm1(2/(c — 2)(r /u)), but although this clarifies the nature of the singularity
does not remove it. The singularity is somewhat benign; Roe and Balsara [38] showe
any error in evaluating ; s near the umbilic point was not magnified in any correspondil
error in the numerical flux. In the present treatment, Riemann problems close to the un
point are avoided unless both states are close to the umbilic point.

2.2. Rankine Hugoniot and Shock Admissibility Conditions

The admissibility of MHD shock waves has been a matter of much debate over the \
[1, 27]. Recently, we developed a global theory for the model and MHD systems [31,
that distinguishes between planar and nonplanar problems. However, in both case
required that admissible shocks have viscous profiles. Here the planar problem n
that there exists n@ component; in other words, everything is confined in flatland. As
result, there exists no Aléri wave in the planar problem. On the other hand, nonpla
problems are of two types: coplanar problem with end states in the same plane and nc
w components and noncoplanar problem.

2.2.1. Planar shocks. Travelling shock-wave solutions satisfy the Hugoniot conditic
[f] = s[u], wheres represents the shock speed. For the planar model problem, the Ranl
Hugoniot relation is obtained by eliminatirsgyit is

o[ul® + (1 - o)u[ul[v] — v[v]* = O, (10)

where the overbars indicate arithmetic averages taken across the discontinuit@]an
denotes the jump of a quantity, that is,(Qr — Q). Throughout this paper we reserve
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L, R for downstream and upstream states. For left and right states, we will use subsci
I, r. By this definition,L =1 and R=r for right-running waves, but =r and R=1 for
left-running waves. Since only waves propagating to the right with respect to the fluid
represented in the present modek=1 and R=r. Shock speeds can be found from the
eigenvalue equation

s = (C+ DU+ ((c— DX+ 42) "2 (12)
Since for quadratic conservation laws, the so-called midpoint rule holds [26];
St.s(UL, UR) = Afs(U), (12)

whereu = %(UL + UR). The four parameteré. ¢ s). r — S determine the type of shocks.
Only slow, fast, and overcompressive shocks were shown to be physically relevant by
viscosity admissibility condition in [31, 32], so that only these shocks should be found
numerical solutions. However, the undercompressive shocks do not have viscous prc
and so they must not appear in planar solutions.

2.2.2. Entropy production. Both the planar and nonplanar models possess an entro
o =Uu? + v?(+w?) which satisfies

Ot + gX = 07 (13)

where g =2u(cu?/3 + v? + w?) is the entropy flux. The increase of entropy across
discontinuity is easily found to be

— STl (i + 3[eF? + 3wl?),

so that the condition for entropy to increase is simply tbht{ 0. Throughout this paper, the
phrase “entropy-satisfying” will be used to denote that this condition is met. However,
planar Riemann problem is well-posed only when we admit those shocks that are entre
satisfying and also have viscous profiles, which excludes undercompressive shocks.

2.2.3. Nonplanar shocks.For the nonplanar model, the Hugoniot condition (10) is
modified to read

rlu]® + (1 — ouu][r] - FIr]* = 0, (14)

wherer 2 =v2 + w?, and we also find that
[ul(v[w] — w[v]) =0, (15)

which admits noncoplanar jumps only ifi][=0; these are the Alen waves for which
(from (14)) r]1=0. In fact, the wave trajectories are all either coplamatvg = vrw, ) or
purely rotational[u] = [v? + w?] = 0).

The signs of the six parametabs; 5 s) . r — S determine which of the MHD characteris-
tics run into the shock. In MHD terminologyhe signs can be represented by four domain

2Shocks in MHD are characterized by an ordered pair of laifels> Q), such that in the upstream state the
shock speed lies in regionP and in the downstream statdies in Q.
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FIG. 1. Entropy-satisfying MHD waves having viscous profil&; S, regular shockst S, |S;, O, X, in-
termediate shocks;,;, C,, slow, fast compound waves.

-1V defined as
[AVZ2 W || B WA | I WP

In [31] it turned out that entropy satisfying regular sho&€@ll — V), S(1 — Il) and in-
termediate shockkS, (Il — IV), 1 S;(1 — 1), O(I — IV), X(Il — III) all have viscous pro-
files. The principal difference between the planar and nonplanar analysis ¥(that 111)
shocks have viscous profiles only in the nonplanar case. Entropy-satisfying MHD sh
having viscous profiles—some of which are embedded in compound waves—are illust
in Fig. 1. OnlyS (Il — 1V) and S(I — 1) shocks are considered physical in classical th
ory. In summary, contrary to the planar problem, the entropy conditipa D is equivalent
for the nonplanar problem to the viscosity admissibility condition.

2.3. Riemann Problem

The Riemann problem concerns the evolution of an arbitrary initial discontinuity. -
evolution can be described by various self-similar waves, contact discontinuity, and
faction waves, as well as shock waves. The model problem has no contact discontint
Planar rarefaction waves are described (wher3) by

Jot = u= U+ )2 (16)

A= AU £ 2(U° + v)Y? (17)
dx X

== (18)

where J; ¢ are the Riemann invariants such thato < J¢ <0 for a fast wave and @
Js < oo for a slow wave. In passing through a rarefaction wave, the state vactoy
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FIG. 2. Hugoniot locus and rarefaction-wave curves for a particular choice of the left.staie, represents
IV — Il expansive shock. The part of undercompressive shockwith [u] <O represents entropy-satisfying
Il — Il shock, while the part withii] > O represents entropy-violating H& Il shock. The geometry of this dia-
gram changes ds is placed in different regions of the plane; for more complete diagrams see [31].

traverses a parabola (see Fig. 2 and Eq. (16)), leading to the nonconvexityatand the
need to include compound waves to ensure a well-posed Riemann problem.

There are two types of compound waves: the slow compound wave, a slow rarefac
wave followed by an intermediate slow shock; and the fast compound wave, an inter
diate fast shock followed by a fast rarefaction wave. The relationship between the sh
and characteristics in compound waves is shown in Fig. 1. Using these compound wa
together with rarefactions, regular shocks, and overcompressive waves, it can be st
[26] that the planar Riemann problem is well-posed. Therefore, all shocks having visc
profiles, including ones embedded in compound waves, can appear in numerical soluti

On the other hand, the Riemann problem becomes ill-posed in the nonplanar probl
This can be seen by noticing that for some data many solutions are possible, as wil
shown in Section 2.4. They involve different internal structures that can be specified by,
example, the transverse field moment,

|25[w wdx (19)

e}

This integral exists for coplanar data if one aligns §haxis with the direction of the
end-states. Otherwise, it can be defined by taking the limits of integration to be large
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finite, such that they lie in essentially uniform regions. In either case the third equatic
the nonplanar model system yields

dl,
gt 2wl =o. (20)

When the end-states are coplanar and if yhaxis is aligned with the direction of the
end-statesw,. = wg=0), |, is invariant; but once the problem becomes noncopldpar,
becomes time-dependent.

2.4. A Family of Riemann Problems with Nonunique Solutions

For a planar Riemann problem whose left and right states are equal and opp
U = —Ugr = (—Ug, vg), Ug, vo > 0, the analytical solution i€, C, [31], a slow compound
wave followed by a fast compound wave, described by

1 1 J 12
u= §<JS+—X>, v = (—S(Js— 5)) for —2Bug + Js) < %<O, (21)

2t 3 t
1 1x Js X\ Y2 X
=2(3+22), v=—(F(3-2 for0<> <2@Bup— Jg). (22
u 3<f+2t) v (3<f t>) <t_(Uo ).  (22)

An overcompressive shock with the speed 0 is located ak = 0. In Fig. 3 this solution
is shown ad. N N'R, with all curves lying in the plane = 0. The solution in the physical
planex, t is shown in Fig. 4. Each rarefaction fan extends right up to the shock, wt
therefore has one characteristic parallel to it on each side; this is the dividing case bet
an undercompressive and an overcompressive shock.

If wis allowed to be nonzero, another solution can be obtained by following the rarefac
curves only as far asl, M’, whereuy =up =0, (X/t)m =—2Js, (X/)m =—2J%, and
then linking these states by an Aéfm‘'wave ak/t = 0. In fact, an infinite family of solutions
can be found, as indicated in Fig. 4.

A with infinite IzV\

FIG. 3. Reference states on a slow rarefaction-wave curve and multiple solutions for a Riemann pro
u. =—ur=(-—0.44,2.4,0). The pointsN N’ can be joined by profiles lying either in or out of the plane. Th
pointsM M’ are joined by a semicircle that represents Atiwvave(A).
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overcompressive undercompressive Alfven wave

right
rarefaction

right
rarefaction

(a) (b) (c)

LNN'R LMM'R

FIG. 4. (a)—(c). The multiple solutions in the physical plaixet).

All of the shocks involved are entropy-satisfying and have viscous profiles for the p
ticular form of dissipationsyluxx. The solution,

U = —Up tanh(2ugpXx/u),
v = —vg tanh(2upx/u) + Cwg sech2upx/ ), (23)
w = —wp tanh(2upx/u) — Cvg sech2uox/ ),

represents a transition between statgs= —ur = (Uo, vo, wo), provided

C2=1+ 7((:2_ Z)UZ%.
vg + wy
These profiles exist both for overcompressive sha@ck&lo) < /¢ and for undercompres-
sive shockgro/ug) > /C.

Without loss of generality, letvg =0, so that the wave is polarized in tiey plane.
Then, a transverse field moment is

2,,2 2
|Z=—c<m/2)? or 12="1 (2+c—2>. (24)
0

A shock of this form can be used to join any point on the segrveNtto its reflection in
the origin, so completing a Riemann solution. The path includes a semi-elliptical traject
outside the planev =0 that is defined by the viscous profile (23). The associated valt
of 1, increases fromxr u/(c — 1)/2 at N N’ to infinity at M M’, this latter limit being the
Alfv’en wave. Being linearly degenerate this wave has no true travelling waveform, bu
asymptotically infinite in extent. (The width of the waves can be measured in terms
u/1o.) Note that for the patiN N’ a second path with, = 0 exists, corresponding to the
planar solution.

3. NUMERICAL SCHEMES BASED ON WELL-POSED RIEMANN PROBLEMS

3.1. Godunov’s Method

First, we consider Godunov-type methods. The Godunov numerical flux can be defil
as

Fur, u) = fu*(u, ur)), (25)



GODUNOV-TYPE SCHEMES FOR MHD, PART 1 555

whereu*(u;, uy) is the intermediate statg0) arising in the similarity solutiom(x/t) of
the Riemann problem, defined as an initial discontinqifyfor x <0, u; for x > 0). The
Godunov method is clearly ambiguous if the Riemann problem is ill-posed.

Here, we propose a new way to determine the intermediate wt@te The basic idea
is first to solve the planar Riemann problem (which is well-posed), and then to insel
Alfv’en wave to deal with the rotation. In this framework, the magnetic field moments
be dealt with more naturally. Furthermore, the indeterminaay,ab’ in (6) will disappear.

The new scheme can be summarized as follows. Let us consider two solutions t
model Riemann problem with data, v, w), (Ur, vy, wy) of the conservation laws (2).
We begin by solving the planar Riemann problem with datar,), (u;, r;), where

r|2 = v|2 + w|2, (26)

r2 =2+ w? 27)

We can either choose to solve the problem in whiglh, have the same sign, or else th
problem in which they have opposite sign. In the first case, it can be shown that the
joining the left and right states always contains a unique point for wRjth=2u and
where an AIfi€n wave can be inserted to realign the left and right field orientations witt
arbitrary adjustment. The second case always contains an intermediate shock that re
the sign ofr. The sign ofx/t — 2u changes across this shock and nowhere else, so tt
is nowhere to insert an AlBri wave, and no way to realign the field directions (unle
by 180). We therefore choose the first strategy, with > 0. If r, =r, =0, the resulting
equation will simply be a scalar conservation law fior

There is one remaining ambiguity. The sense of the rotational discontinuity (clocky
or anti-clockwise) is unresolved, and even its magnitude contains an arbitrary multip
2. However, for the ideal problem, the representation in physical space is unaffe
Therefore, this form of the Riemann solution defines a unique numerical flux.

3.2. Roe’s Scheme

Solving the MHD Riemann problem exactly turns out to be impractical, since even ul
an evolutionary condition it involves too many cases (the waves on either side of the co
may beS S, SRy, RiR:, Ri$, S, S, Ri, Ry, each of these with or without an Aléw
wave). Thus we will be forced to use some approximations in MHD and therefore dev
them also for the model problem.

In Roe’s approximate Riemann solver [36]X, t) is determined by solving a constan
coefficient linear system of conservation laws,

LAa't + A(UI s Ur)ﬁx =0. (28)

If Ahas eigenvaluel and right eigenvector, and if we decomposel] = > &f;, then
we have( = x/t)

0 =u+> afi=u—> af;. (29)

ii <€ Ri >&
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If some conditions are satisfied @y the numerical flux becomes

Fir12 =f(Uj) + Z(iiéi Fi)jt1/2, (30)
2i<0
=fUj40) — Y M&ifi) 12, (31)
2i>0
1 1 A
= 50U + U)) - 5 Zmi &if1) 112, (32)
1 1 ~
= E(f(Uj) + (f(Uj41) — §|A(Uj+1/2)|(uj+1 - Uj). (33)

In these equations, the hat represents Roe’s average. However, because the model pr
has only quadratic nonlinearity these are here just arithmetic means:

U= 1(u +u), v= 1( +u), w= 1( + wy) (34)
_2| r)s U—2v| Vr ), lU—2w| Wy ).

However, to create an approximation to the solver discussed in the previous section
do not implement the method here in precisely this way; in particular, we do not employ
above averages. We take, instead, coplanar@atg ), (U, ry) and solve the approximate
coplanar problem with

1 _ 1
U=§M+mxr=§m+m, (35)

When the left and right states are separated by close tothB0form of averaging is very
different from the previous one.

Finally, the direction of the stationary sta{s, is taken to bep, if the Alfven wave has
positive speed, angk if the Alfven wave has negative speed, i.e.,

1 ) 1 .
¢ = S(A+signi)d + 5 (1 - sign(iy))gr. (36)

¢* is undetermined ifu* =0; but in that case the fluxes in (3) do not dependg¢dn
Specifically, if the Riemann flux for the coplanar problem is

fe = ( I) @

then the Riemann flux for the noncoplanar problem is

fi
fy = | fycosp* | . (38)
f; sing*

Alternatively, one may work withiu, r, ¢) as the unknowns.
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3.3. Higher-Order Accuracy

Most of procedures developed for higher accuracy can be applied to this method
example, the MUSCL approach [40] and flux-limited methods can be used to obtain sec
order accuracy. In this study, the following second-order space- and time-accurate uf
scheme, Hancock’s scheme, is used [25, 36]. After a step involving a propagation o
time stepAt/2,

— At

Uj = U? T 9Ax (FT+1/2 - Fljtl/Z)’ (39)

whereF can be given from Egs. (33), (36), and (38), second-order extrapolations are i
duced toU,

U|j+1/2 = L_Ji + %Bl (UT - ?—1)’ (40)
12 = Lji N %Br( f+1 UT) 41
where
B = %((I—K)B(bl’r) + (1+K)b|’rB<b|_]:r>>’ b = bi = Ujil—_t’l

and the ratios in the last equation are defined componentwise. An extrapolation para
« and a symmetric limiteB(b) are introduced. Then the final scheme is

At = —
U?+l = UT - B(Fj+1/2 - ijl/Z)» (42)
WhereIE,- +1/2= F(Ulj +1/2 Urj +1/2)-

3.4. Entropy Condition

It is often necessary to modify Roe’s approximate Riemann solver in order to ren
entropy-violating shock waves. There exist various ways to do this [3, 24, 37], but it
not been found necessary to implement any of them in the present work. The MU
reconstruction tends to avoid most of the problems and leaves only very small “glitc
(see numerical experiment 1).

3.5. Other Schemes

From Eg. (38) the idea can be applied to other Godunov-type numerical scheme!
example, Marquina’s scheme whose the flux function combines Roe’s flux and a local |
Friedrichs flux [16]. Indeed, since it is based on a reformulation of the ideal equatior
can also be applied to other schemes such as the Lax—Wendroff scheme.

3.6. Discussion

For Riemann problems in which the left and right states have transverse vectors
significantly different orientations, the new schemes, either arising from Godunov’s me
or from Roe’s, will give quite different fluxes from the old ones. The dissipation mat
|Al in (33) can be determined to be, in the planar case, vien0 < A (that is, when
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v? > cu? and the flux is not wholly upwind),

IA

= 1 40?2 + 2c(c — DHu? 2(c+ Lyuv 43)
T ((c— 120 + 402) Y 2c+Dav 42— 20c—-D12 )

The trace of this matrix,

Tr( Al = 2((c — 1202 + 402) "2,

is a measure of the numerical dissipation.

Consider left and right states comprising a rotational discontinuity (Ug, vo), Ur =
(up, —vp). This is not, in general, an allowable discontinuity for either the planar or nol
planar problem. For the regular Roe solver, we haveug, v=0; hence, T A|) =
2|(c— 1)ug|. Whereas for the modified solver we hawve=ug, v=vg; hence, T(|A|) =
2((c — 1)?u3 + 4v3)Y2 which is greater than the regular dissipation by a factor of at lea
(c+1)/(c—1). Therefore, we expect one feature of the new solver to be that it breaks
nonphysical discontinuities more rapidly.

Another aspect of the modified solver can be seen by considering data sughthaurg.

For the old solver, the mean statéiis: v =0, and A| vanishes, whereas with the new solver,
| Al becomes a diagonal matrix di@jo|, 2|vol).

We now conduct some numerical experiments to observe the effects of these differer

4. NUMERICAL RESULTS

The evolution of initial discontinuities predicted in Section 3 will be investigated b
an upwind scheme using either a conventional Roe’s solver (34) or the modified sche
(35). In all cases¢ =3, a grid of 200 points witlAx = 0.005 and the CFL number 0.5
are used. For second-order schemes, one-sided extrapalatierii and minmod limiter
B(b) = max(0, min(1, b)) are used. The analytical solutions are described in Section 2
and are denoted by solid lines in Figs. 5-8.

4.1. Behavior at a Sonic Point

The first test problem intends to check the performance of the MUSCL scheme for o
featuring an entropy-violating shock. The initial discontinuity is a fast switch-off expansi
shock defined ag, = (—ug, 0, 0), ur = (Ug, 2Uog, 0), ug > 0. The corresponding physical
solution consists of slow and fast rarefaction waves. The slow rarefaction wave turns |
fast one ai(1— 5v2)/2)u,. Numerical results in the physical space) and in the state
spacev(u) are shown in Figs. 5a and b. Without any fix, the first-order scheme leads t
fast expansive shock. On the other hand, the MUSCL-type second-order scheme prod
a numerical solution very close to the analytical solution, without the help of any sonic fi

4.2. A Problem with No Unique Solution

The next problem is chosen for the purpose of investigating which solutions among
multiple ones discussed in Section 2.4 will be obtained by the new scheme. The ini
discontinuity is an entropy-violating shock definedias= —ur=(—0.44, 2.4,0). The
analytical solution i€C;C, whenl, =0 (LNN'Rin Figs. 3 and 4) and&?; AR, when|,
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FIG.5. Resultsforatestproblem = (—uo, 0, 0), ug = (Ug, 2Uo, 0), Up(=1) > 0 by the new upwind scheme
with Roe’s solver: (a) first-order scheme without a sonic fix (top); (b) MUSCL-type second-order scheme wit
a sonic fix (bottom).

becomes infinity (MM’R in Figs. 3 and 4). We stress, however, that these calculati
do not resolve the internal structures or compute the dissipative terms, d¢ thiathese
ideal calculations remains zero. Figure 6 shows that the conventional scheme actually
neither of the above solutions but, instead, yieldRaX R, configuration involving I 111
intermediate shock with a larger entropy-production rate. On the other hand, the new sc
yields R; AR, configuration involving Alfen wave with a smaller entropy-production rate
which is shown in Fig. 7. The perfect resolution of this wave is due to its being statior
with respectto the grid. Other properties are similar to the result by the conventional sch

This test provides an example where the numerical solution is shown to be subje
the method used for defining interface fluxes, in this case by defining the average
Therefore, we may build schemes in which different sets of Riemann solution are allo
Here, it turns out that one tends to produce the intermediate-time solution, while anc
tends to generate the large-time solution.

4.3. Rotational Discontinuity

At this stage, it may be instructive to check the evolution of the rotational disco
nuity. The initial discontinuity is given ag; =(0.19, 1.8, 0), ur = (0.19, —1.8, 0). The
analytical solution [31] to the planar problem is a fast rarefaction followed by a slow cc
pound waveC; R,. Four equations (10)—(12) and (16) will determine two intermedié
states uniquely. The three waves, a slow rarefaction, a slow intermediate shock, and
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FIG. 8. Results for a Riemann problem of rotational discontinuity= (0.19, 1.8, 0), ur = (0.19, —1.8, 0):
(a) conventional second-order upwind scheme (left half); (b) new second-order upwind scheme (right half)

rarefaction, are defined by four regiong,/t), = —2.86, (x/t)m m >~ 0.4608 and 542,
and(x/t)r =4.38.

Figures 8a and b show the results by the conventional and the new second-order u
schemes. The results show excellent shock-capturing capability without spurious ¢
lations. Both schemes destroy the rotational discontinuity and converge to the anal
solution, but the new scheme yields a slightly better result. Here, it should be mentit
that even though the new scheme is built using only conventional evolutionary waves
solution produces a nonevolutionary intermediate shock embedded in the compound:
That is to say, it allows nonevolutionary waves to persist if, as here, they are constrain
symmetry to do so. And when they are present, they are well-resolved.

4.4. Slightly Nonplanar Data

Up to now, we considered only coplanar Riemann problems. Even though these
served to explore the MHD singularities, they are probably rare in practice. Thus
problems of more interest will be ones for which the differences in orientation are c
to multiples of 7. In Fig. 9, such a problem is studied by applying a small rotatior
disturbance to upstream and downstream states. Initially, the discontinuity is define
u. =—Ur=(0.93750.5,0.0). This is preserved as a stable numerical solution by t
regular scheme, although the modified scheme breaks it up immediately irfBpASh
configuration, as seen in the right-hand figures. Then just after 300 iterétiong labelled
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FIG. 9. Results for a noncoplanar Riemann problem= —ug = (0.9375 0.5, 0.0). to, t;, ty, t3 indicate the
time after 300, 600, 900, 1200 iterations. Rotational disturbanee0.025 is applied aty: (a) conventional
second-order upwind scheme (left half); (b) new second-order upwind scheme (right half).

asty in Fig. 9), a rotational disturbanae = 0.025 is added everywhere, so that the flow is
no longer coplanar. The results are shown in the physical spaggsv(X), andw (X).

With the new scheme tig AS configuration persists and the perturbation isincorporate
smoothly. With the regular scheme the transition is slower and far less clean, featurir
time-dependent intermediate shock that eventually converges to aanAlfave. One of
the differences with the new scheme is the existence of a spikelindoes not disappear
even in very large times and actually its amplitude increases.

In this case, the values af either side of the Alfeh wave can be calculated by the
Hugoniot relation as >~ +1.877, something that the new scheme predicts more accurate
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FIG. 10. Results for a noncoplanar Riemann problem= (0.19, 1.8, 0.0), ur = (0.19, —1.8, 0.0). to, t;,
tp, t3 indicate the time after 200, 400, 600, 800 iterations. Rotational disturbare®€.09 is applied aty:
(a) conventional second-order upwind scheme (left); (b) new second-order upwind scheme (right).

than the old one. From this experiment, it is clear that the new scheme is more efficient
the conventional one in converging to the large-time solution.

4.5. Perturbation of a Rotational Discontinuity

In Fig. 10, another similar case is studied that involves the perturbation dfa@@ional
discontinuity. The initial discontinuity is given ags = (0.19, 1.8, 0.0), ur = (0.19, —1.8,
0.0). The exact solution for this planar problem is a slow compound wave formed fro
slow rarefaction and an intermediate shock. This solution is seen labeltgéhdsig. 10.
At time tp, the rotational disturbanae = 0.09 is added. Similarly to the previous results
the slow intermediate shock embedded in the compound wave is broken up into an A
wave and left-running waves. This time there is little difference between the two se
results. Notice that those left-running waves decay very slowly.

4.6. A Viscous Calculation

The last problem is considered in order to justify the new theory on the evolution of M
shock waves. We consider a IV (overcompressive) intermediate shogk = —ug =
(0.9375 0.5, 0), the same case that was treated ideally in Section 4.4) for which an e
viscous profile can be obtained from (23). We discretized the nonideal equation

Uy + fx = pluy

using the Lax—Wendroff method with extremely fine grids. We used0.002 and 1000
grid points. This solution proved to be numerically stable.

Then we reran the computation with the same perturbation as in the ideal ea@®25,
and the outcome is shown in Fig. 11. Here the initial data is labelleg. aster 1000
timesteps (labet;) the internal structure of the initial profile has changed considera
(see in particular the phase-spage v) and (v, w) plots). However, the appearance il
physical space(x) shows little change. After 5000 iterations (latgl the internal pro-
file is approaching its asymptotic limit (a semicircle (in, w)) and simultaneously the
shocks start to form and move outward. After 15000 timesteps (lapéhe picture is
almost fully developed but decay of the central discontinuity is still not complete. T
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FIG. 11. Numerical experiments for nonideal problem= —ug = (0.9375 0.5, 0), « =7 =0.002 by the
Lax—Wendroff method with a very fine grids (1000 grid pointg)ty, t,, t; indicate the time after 0, 1000, 5000,
15000 iterations. Initial viscous profiles at timyeand the evolution under noncoplanar variation are presentec
Rotational disturbance = 0.025 is applied at.

Alfv'en wave continues to expand slowly in phase space toward the profile predicted by
(u=0, v?+ w?=consj.

The integrall,, taken over any finite domain, grows through three effects that can be se
in the w(x) plot: first, w grows in magnitude; second, the region occupied by theehlfv”
wave broadens; and third, the shocks move out. The combined effect of all these must be
I, grows linearly in time (20) but the first two effects dominate the early history, where
the last effect dominates the late-time behavior. Looking back to Section 4.4 and Fig. 9,
see that the new scheme, without resolving any internal structures, enforced very effecti
the late-time behavior. The ideal calculation, of course, does not reveal the time-depen
broadening of the Alfeh wave that must occur with any finite

5. SUMMARY AND DISCUSSION

As a step towards further refining Godunov-type numerical schemes for the MHD eq
tions, a model system that exactly preserves the hyperbolic singularities has been stu
With the help of recent analytical results on nonstrictly hyperbolic conservation laws
class of well-posed Riemann problem is identified. Based on this a new way to def
numerical fluxes on cell interfaces is proposed. Numerical experiments show that the |
scheme is more efficient in calculating the large-time solution. But the scheme also capt
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intermediate shocks where these are allowed by the analysis, for example, shocks c:
a 180 rotation. Analysis confirms that these intermediate shocks have viscous pro
implying that numerical realizations of nonevolutionary shocks are not a mere conseqt
of numerical artifacts or forbidden disintegration of waves.

Extension to the full MHD equations presents some technical challenges, of whict
most obvious is that the full problem features, in general, two &ifwaves, and hence,
two possible places for rotation to take place. We hope to report on a solution to
problem in due course. It also remains to be seen whether the essentially one-dimen
analysis involved in Godunov-type methods will continue to pay dividends in two- :
three-dimensional calculations.

Nevertheless, we expect that the issues raised by the present work will remain in
tant. The MHD equations, unlike the Euler equations, have weak solutions that cann
determined in ignorance of the dissipations involved. The form of numerical dissipa
employed therefore can and does affect the selection of solutions. As always, one v
like to employ the weakest dissipation that bestows stability. The dissipation in Godu
type schemes is a matrix having rather subtle properties. The dissipation proposec
is actually stronger than that of the regular scheme when faced with inadmissible sh
Our claim is that this can substantially accelerate the convergence of a code to those
solutions that typify late times.
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